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Abstract - An improved and accurate formulation of time-domain BEM for determining the interior
stresses in a 2-D transient dynamic analysis is presented. A new set of simpler and better behaved
tr,lnsicnt dynamic stress-kernels is derived. With these interior stress-kernels. it has been possible
to overcome all the analytical complexities that have hindered the accurate determination of interior
stresses in the past. The accuracy and stability are established via a few numerical examples. including
those involving stress con(.'Cntrations.

INTRODUCTION

The accurate determimttion of dynamic strcsses remains one of the most difficult problems
of enginl."Cring analysis. The Ooundury Element Method (OEM) has proven to be one of
the better numerical methods' for stress analysis (Banerjee and Butterfield. 1981). However.
for 2-D transient dynamic problems. because of the inherent complexity no attempt was
made ut deriving these integral identities for interior stresses for a long time. Instead.
interior stresses were determined from interior displacements via a Finite Element type
ulgorilhm (Mansur. 1983). Only recently did Israil and Banerjee (1990) overcome these
dilliculties and derive them for the first time. However, it was later observed that there
remained an upparent singularity at the wave-front in the convoluted form of these kernels
which needed elaborate and expensive numerical treatment for some problems. Moreover,
for fracture mechanics problems where the element sizes can vary rapidly over the surface,
the results of the interior stresses obtained by the technique described in Israil and Banerjee
(1990) were found to be inadequate. In this paper, those difficulties have been removed
through some convenient condensation which makes the convoluted stress-kernels simpler
to deal with and well behaved. It has been shown that the resulting analysis is capable of
producing accurate solutions for problems with any kind of discretization pattern.

BOUNDARY INTEGRAL EQUATION

The boundary integral equation for time-domain transient dynamics can be expressed
as (Banerjee and Butterfield, 1981):

where u,(x. n = displacement; t;(x, n = traction; T, the time at which response is desired;
x and ~ are the field and source points respectively, and. indicates convolution integrals.
Gil and F;I are. respectively. the displacement and traction-kernels in 2-D transient
e1astodynamics. They are given in Israil and Banerjee (1990) but are repeated here for
completeness:
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whcre I' = T - 't is the rctarded time; If It A 2 and A) are functions ofspatial terms and C~tn

be found in the Appendix.

BOUNDARY INTEGRAL EQUATION FOR INTERIOR STRESS

The boundary integral equation for interior stress can be written as:

(3)

where Gkl)and Fkl) are the interior stress-kernels.
These kernels are derived from the boundary kernels using the relations:

(4a)

(4b)

During the derivation, operations are done on the terms corresponding to each wave
separately and satisfying the causality ofeach wave. For this purpose, the boundary kernels
given by expressions (2a) and (2b) are written, alternately, as:
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Following the procedure outlined before, the stress-kernels are derived using
expressions (5) and are given by:
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In the above expressions, Bit 8 2• B) and E.. El , E" E4 • Es contain spatial terms only
and can be found in the Appendix. These are non-convoluted forms of the explicit 2-D
transient interior stress-kernels and are presented here for the first time.

CONVOLUTED INTERIOR STRESS-KERNELS

The field variables are assumed to vary linearly during a time step and expressed as:

(7)

where f,(X, t) stands for the displacement or the traction variable and M \(t) and M 2(t) are
linear temporal shape functions, given by:

where the subscripts I and 2 refer to the forward and backward temporal nodes respectively
during a time step.

With the temporal discretization given by eqn (7), the convolution integral in eqn (3)
yields;

G:I/ * tie = f [/7 CftAT G:I/MI(t)dt+/~-1 (ftAT G:I/Ml(t)dt]
ft_ I Jlft-IIAT Jlft-nAT

N
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This expression. together with a similar expression for nij * U/co transform eqn (3) into:
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(9)

where the terms in the parentheses are the convoluted interior stress-kernels and are stated
below:
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The terms IIIJi and IIIJ~ appearing in eqns (tOe) and (IOd) have strong apparent
singularity (of order ,. 3fZ) at the wave fronts. This apparent singularity does not seem to
cause any trouble when the discretization contains elements of fairly uniform size. The
difficulty occurs when one uses a model with widely varying elements, especially next to
each other as is often needed in stress-concentration studies. However, this singularity is
reduced if one adds the kernels corresponding to each time node together as discussed
below.

Equation (9) can alternately be written as

(II)

In evaluating the kernels (n.~:"l +n.~~'), the terms with apparent singularity ofr· m
at tbe wave-front vanisb and only those with ,.lf2 singularity remain, the integration of
which does not pose any difficulty. Thus tbe convoluted stress-kernels given by eqn (II),
after convenient condensation, take the form:

(12a)
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These new forms of convoluted stress-kernels are, evidently, much simpler and better
behaved than the previous ones. In evaluating the above terms the causality condition must
always be satisfied, i.e. the time-related terms cannot be negative.

Once the time-eonvoluted kernels are sorted out as explained above. the numerical
integration ofeqn (II) is straightforward (Israil and Banerjee, 1990). Isoparametric quad
ratic elements are used for spatial modelling of the variables.

NUMERICAL EXAMPLES

The following examples are presented to demonstrate the capability of the interior
stress algorithm to produce accurate solutions.

a. Bar subjected to ramp-step load
A ramp-step type of load (Fig. 2b) is applied to one end ofa rectangular bar (alb = 2),

shown in Fig. I, while the left end is fixed. The lateral sides are assumed to be traction-free.
To simulate purely one-dimensional behavior, the Poisson's ratio of the material is assumed
to be zero. This will facilitate comparison with available analytical solutions. For con
vergence studies. two types of mesh were chosen: one course mesh with 12 elements and
another fine mesh with 48 elements (see Fig. 3). Axial stress is computed at 31 interior

Fig. I. Rl."Ct:lngular bar (alb '= 2) with prescribed load and boundary conditions.

lime
(a)

P(I)

lime
(b)

Fig. 2. Time history of prescribed load. (a) Heaviside type. and (b) ramp-step type.
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~ Interior point.

(a)

(b)

Fig. 3. Discretization of the bar, (a) coarse mesh (12 quadratic elements), and (b) fine mesh (48
quadratic elements).

points along the axis of the bar. The time response is studied using three cases: (a) coarse
mesh with large time step. liT, =0.125a/cl: (b) coarse mesh with smaller time step.
liT2 = 0.03 I25a/cl : and (c) fine mesh with smaller time step. liT2 = 0.03 125a/(' I' In each
of the above cases. the responses are plotted at two different times: T, == 0.5a/cl and
T 2 == 1.5a/cl and arc presented in Figs 4, 5 and 6. The analytical solution shown is for a
Heaviside-type load (Fig. 2a). The present algorithm with linear temporal variation of the
field variables can model a ramp-type load better than a Heaviside-type one. Therefore. the
sudden jump in the load is replaced by a ramp. The BEM solution shows a slope at the
front of the wave and it is because of the ramp-type loading. It is observed that with coarse
mesh and time-step liT, (P-wave travels 1/2 the element length during a time-step). there
is some oscillation in the solution especially at time T2 (Fig. 4). With smaller time-step IiT2

(P-wave travels 1/8th of the element length), the oscillation is reduced to a great extent as
can be seen in Fig. 5. Oscillations disappear completely once a finer mesh with a compatible
optimum time-step (P-wave travels 1/2 the element length) is used (Fig. 6). It has been
observed that to obtain a given level of accuracy in interior stress. one needs a finer mesh
than is needed for boundary solutions.

b. Plate with a central crack
Figure 7(a) shows the geometry and boundary conditions of a rectangular plate with

a centrally located crack. It is loaded with a Heaviside-type step load. Because of symmetry.
only one-quarter of the plate is modelled and the discretization is shown in Fig. 7(b). Two
quarter-point elements are used one at each side of the crack-tip. This problem has been
solved by Chen (1975) using a finite difference technique and later by Dominguez and
Gallego (1989) who used traction-singular boundary elements. The plate-material is
assumed to be linear elastic with the following parameters:

shear modulus, /.l = 76923 MPa.

Poisson ratio, v == 0.3,

density, p = 5000 kg m- J •



Fig. 4. Interior stress. Coarse mesh with t:.T =0.125a/ch (a) at time T I =0.5a/ch
and (b) at time Tz = l.5a/cl'
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The load intensity is:
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(70 = 400 MPa.

The various plate dimensions are:

length, b =40 mm

width, W = 20 mm

crack-length, 2a = 4.8 mm.

The time-step chosen is consistent with the element size and is taken as tlT =0.32 JlS,
during which the P-wave travels about 2.4 mm.

The results obtained for the mode-I dynamic stress intensity factor (DSIF) by the
present analysis are compared with those of Chen (1975) and are presented in Fig. 8. The
DSIF are obtained from the crack opening displacements (COD) as described by Blandford
et al. (1981) for static problems. Dominguez and Gallego (1989) obtained DSIF from
crack-tip tractions (using traction-singular elements), and their results are almost identical
to the present solutions in which no special traction-singular elements were used.

Interior stresses were obtained along lines inclined to the crack-axis at angles 0 =450

and 90° (Fig. 7b) leading to the crack-tip. The behavior of interior stresses in the vicinity
of the crack-tip is 1/;;, which in a logarithmic scale will show a linear variation. This
phenomenon is depicted in Fig. 9 for various times where linear variations are noticed near
the crack-tip but at greater distances, the variations are no longer linear.

CONCLUSION

An improved algorithm for determining transient dynamic stresses by time-domain
OEM is presented. The non-integmble wave-front singularity in the interior stress-kernels
is reduced to an integrable one. The resulting algorithm is capable of producing accurate
solutions and has been demonstrated via numerical examples.
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APPENDIX

(I) Spatial term.f in F·kernel

). ar
AI = -n,r/+2r,r'jJ-It' .. n

ar
A: =n,r./ +n,rJ + a;; (0,/ - 4",r./)

ar
A, = on (2r,r./-J,/)-n j r.,.

(ii) Spatial terms in G" and P·kernelJ

).
8 1 =; J,/r./r+2r.,r./r,.
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